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Abstract—To identify security vulnerabilities in Android ap-
plications, numerous static application security testing (SAST)
tools have been proposed. However, it poses significant challenges
to assess their overall performance on diverse vulnerability
types. The task is non-trivial and poses considerable challenges.
Firstly, the absence of a unified evaluation platform for defining
and describing tools’ supported vulnerability types, coupled
with the lack of normalization for the intricate and varied
reports generated by different tools, significantly adds to the
complexity. Secondly, there is a scarcity of adequate benchmarks,
particularly those derived from real-world scenarios. To address
these problems, we are the first to propose a unified platform
named VulsTotal, supporting various vulnerability types, enabling
comprehensive and versatile analysis across diverse SAST tools.
Specifically, we begin by meticulously selecting 11 free and open-
sourced SAST tools from a pool of 97 existing options, adhering
to clearly defined criteria. After that, we invest significant efforts
in comprehending the detection rules of each tool, subsequently
unifying 67 general/common vulnerability types for Android
SAST tools. We also redefine and implement a standardized
reporting format, ensuring uniformity in presenting results across
all tools. Additionally, to mitigate the problem of benchmarks,
we conducted a manual analysis of huge amounts of CVEs to
construct a new CVE-based benchmark based on our compre-
hension of Android app vulnerabilities. Leveraging the evaluation
platform, which integrates both existing synthetic benchmarks
and newly constructed CVE-based benchmarks from this study,
we conducted a comprehensive analysis to evaluate and compare
these selected tools from various perspectives, such as general
vulnerability type coverage, type consistency, tool effectiveness,
and time performance. Our observations yielded impressive
findings, like the technical reasons underlying the performance,
which provide insights for different stakeholders.
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I. INTRODUCTION

RECENTLY, mobile devices have become an indispens-
able part of people’s daily lives. They serve as a platform

for numerous mobile applications (apps) catering to various
needs, such as shopping, banking, and music, among others.
While these apps greatly enhance convenience, they also store
a vast amount of user-related information, leading to security
risks such as sensitive data leakage [1], [2], [3], [4] and ACE
attack [5]. For example, a critical zero-day vulnerability [5]
discovered in WhatsApp allows attackers to remotely install
spyware via specially crafted SRTCP packets. Exploited by
NSO Group, it executed arbitrary code without requiring user
call response, impacting numerous users. Consequently, guar-
anteeing the safety and dependability of mobile apps has be-
come a top priority for all stakeholders. To ensure the relia-
bility of mobile apps, both academia and industry have made
significant efforts. A plethora of Static Application Security
Tools (SAST) for checking security vulnerabilities have been
developed. These tools play a vital role in identifying poten-
tial threats and mitigating security risks, thus enhancing the
overall security posture of mobile apps [6], [7], [8], [9], [10],
[11], [12], [13].

Evaluating the overall effectiveness of SAST tools offers sig-
nificant benefits to various stakeholders, including tool devel-
opers, users, and researchers. While numerous tools have been
designed to address specific vulnerability types, it is crucial to
grasp how well SAST tools work with general vulnerability
types. This understanding serves as a guidepost for developers
to bolster support for various general or common vulnerability
types in the Android domain and also aids users in choosing
tools offering broader, more inclusive vulnerability detection.
The existing studies [14], [15], [16] have been conducted to
evaluate the detection capabilities, but they often suffer from
two main problems. (1) Firstly, their absence of a unified plat-
form means that comparisons can only focus on coarse-grained
quantities rather than fine-grained vulnerability types. For in-
stance, the Android SAST tool named SUPER [8] consolidates
various cryptographic vulnerability types under the broad type
of “Weak Algorithms” whereas other tools, like AUSERA [4],
[10], offer a more detailed breakdown, distinguishing between
“AES encryption issue” and “DES encryption issue”. This leads
existing approaches to prefer to evaluate these vulnerabili-
ties primarily under the broad “Cryptography” category at a
coarse-grained level. Moreover, the lack of normalization across
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diverse tool reports also amplifies complexity. These hinder a
comprehensive understanding of the strengths and weaknesses
of different tools from this important aspect, limiting their po-
tential for further improvement. (2) Secondly, the evaluation
process typically relies solely on synthetic benchmarks [17],
which may not precisely represent real-world scenarios. Hence,
the effectiveness of these tools in real-world environments may
not be adequately gauged, potentially leading to discrepancies
between lab-based assessments and practical applications.

Indeed, conducting a comprehensive evaluation of SAST
tools faces substantial challenges that need to be addressed
to improve the evaluation process effectively. (1) One of the
significant obstacles is the various vulnerability types sup-
ported by different SAST tools, tailored to their specific de-
tection scenarios. Consequently, direct comparisons of their
supported types become impractical due to the lack of stan-
dardized documentation specifications for many tools. As for
the issue of varied report formats and contents among SAST
tools, this creates barriers to directly comparing valuable vul-
nerability reports across tools. To overcome these, huge ef-
forts should focus on establishing a unified platform or set
of guidelines for defining and describing their complex and
diverse vulnerability types, and normalizing vulnerability re-
ports format for enabling automatic comparison, allowing for
more meaningful and fair evaluation between different tools.
(2) Further, as synthetic benchmarks are widely used in evalu-
ating SAST tools, we endeavored to comprehensively evaluate
the performance of these tools by constructing a real-world
benchmark based on Android-specific CVEs. However, chal-
lenges arose due to the lack of clarity in the descriptions pro-
vided by some CVEs and the absence of detailed vulnerability
information.

In detail, to tackle these challenges, we first selected 11 free
and open-sourced Android SAST tools based on well-defined
criteria from 99 existing static analysis tools as platform bases.
We then meticulously reviewed the metadata of each SAST
tool and unified the various supported vulnerability types of
different tools, resulting in 67 unified general/common types
within Android landscope as a taxonomy. Further, we adjusted
SAST tools’ source code for unified TXT result reports and
crafted parsers to extract vulnerability reports achieving nor-
malization. Based on the tool bases, unified taxonomy, and
parsers, we proposed a platform, named VulsTotal, to help ef-
fectively evaluate the detection capability of Android SAST
tools. We highlight the aforementioned key steps in develop-
ing the platform required a total investment of five person-
months. Secondly, to overcome the challenges of constructing
real-world benchmarks, we initially employed automated meth-
ods to filter out-of-scope CVEs. Subsequently, we dedicated
significant human effort to manually label the remaining CVEs
based on their descriptions and provided resources. This metic-
ulous process allowed us to build a CVE-based benchmark
tailored to our research scope. We utilized the platform and
performed a comprehensive evaluation of selected SAST tools
based on different synthetic benchmarks (i.e., GHERA [18] and
MSTG&PIVAA [19], [20]) and a newly constructed CVE-based
benchmark. Based on it, we gained valuable insights into these

tools’performance across various dimensions, aiming to answer
four research questions in § III.

Our comprehensive study reveals that (1) none of the selected
SAST tools fully cover the 67 general/common vulnerability
types, with the highest coverage reaching 67%, indicating room
for improvement in their detection capabilities (RQ1). (2) The
results on synthetic benchmarks show that there is a significant
gap between the supported vulnerability types of these SAST
tools and the types injected in these synthetic benchmarks.
The highest coverage rates for GHERA and MSTG&PIVAA
are 41.18% and 50%, respectively (RQ1). (3) The tools mainly
use the method as pattern-matching for vulnerability detection,
leaving a notable gap for scenario-related logical vulnerabil-
ity types found in Android-specific CVEs and GHERA, like
input validation vulnerabilities. (RQ2) (4) Due to the various
support statuses of unified vulnerability types for these tools,
their detection results cannot be quantitatively compared across
different tools. Instead, we can only independently investigate
the detection capability of each tool on these benchmarks.
Granularity issues in pattern matching, a lack of code context,
and analysis failure are the underlying causes of the tools’
effectiveness; therefore, the tools perform similarly on both
synthetic and real-world benchmarks in our study (RQ3). (5) In
terms of time performance, the bytecode-based SAST tools scan
faster than most SAST tools that employ source code analysis
(RQ4). Finally, we also discussed and highlighted suggestions
for different stakeholders.

In summary, we made the following contributions.
• To the best of our knowledge, we are the first to build a

unified platform, named VulsTotal, for evaluating SAST
tools for Android, which combines the detection capability
of 11 selected SAST tools by making substantial efforts
to unify vulnerability types, including 67 general/common
types as a taxonomy, and normalize vulnerability reports
with five person-months. Additionally, VulsTotal boasts
4,000 more lines of Python code.

• To comprehensively evaluate Android SAST tools, we
constructed a new real-world benchmark based on finely
filtered 292,776 CVE entries, comprising 250 Android-
specific CVEs and 229 APKs, and 34 vulnerability types.

• Based on VulsTotal, the existing synthetic benchmarks, and
newly-constructed CVE benchmarks, we further compre-
hensively evaluated the detection capability of the 11 tools
from different dimensions such as type coverage, type con-
sistency, detection effectiveness, and time performance.
We finally discuss some specific and useful suggestions
for tool developers and users.

We have released all relevant data and code used in our study
on GitHub [21].

II. OVERVIEW OF OUR STUDY

This section introduces the key parts of our empirical study.
As shown in Fig. 1, we first introduce the criteria for tool se-
lection. Next, we describe platform construction steps involving
vulnerability type unification and report normalization. Lastly,
we discuss the details of benchmark construction.
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Fig. 1. Overview of our study.

TABLE I
THREE SETS OF KEYWORDS USED FOR TOOL COLLECTION

Android-Specific Constraints on Tools Research Objectives

APP Security Analysis Tools
Android Vulnerability Detection Effectiveness Analysis
Mobile Application Static Analysis Systematic Literature Review

Taint Analysis

A. SAST Tool Selection

To thoroughly evaluate the vulnerability detection capabili-
ties of Android SAST tools, we sought out a diverse set of SAST
tools from both academic and industrial domains. Specifically,
we scoped our research to Android SAST tools and established
a dynamic and iterative process for crafting keyword sets which
are displayed in Table I. We primarily searched tools from
recent literature and conducted a systematic literature review
(SLR) following well-established guidelines [22], [23], [24]
to ensure comprehensiveness and systematicness. Using the
three sets of keywords from Table I, we applied logical OR
within each set and logical AND between sets to form precise
search strings. Further, we deeply mined ACM [25], IEEE
[26], ScienceDirect [27], SpringerLink [28], and DBLP [29] to
conduct advanced search using search strings, strictly screen,
and finally lock 7 core literatures [10], [14], [15], [16], [30],
[31], [32]. The entire process was conducted by the first author,
with co-authors performing cross-validation to ensure accuracy.
We further retrieved Android SAST tools on GitHub using the
above search strings and sorted the results by star numbers.
We focused on collecting tools exceeding 10 stars, ensuring
the inclusion of relatively popular and widely recognized tools.
We conclude by obtaining a tool list from two prominent web-
sites, including NIST [33] and Gartner [34], using the above
search strings for searching as a supplement. After collating
data and filtering out duplicate entries, we identified 99 perti-
nent SAST tools in the Android vulnerability research domain,
spanning both industry and academia (all details of tool lists and
screening process are available in GitHub [21]). To facilitate the
selection and comparison of Android SAST tools for our study,
we designed six selection criteria as follows:
① Free of charge and transparent. The Android SAST
tools must be free of charge. While commercial tools are in-
deed prevalent in the industry, they often entail substantial
costs, which would be prohibitive for our large-scale experi-
ment. Additionally, since we attempted to explore the internal

implementation of the tool candidates, we filtered out 47 tools
that are not transparent or free, such as Quixxi [35], Immuni-
Web [36], and Checkmarx SAST [37].
② GitHub stars. We tailed the star number for all tools available
on GitHub and filtered out tools with fewer than 10 stars to focus
on more widely recognized and potentially more established
tools. We finally excluded 1 tool (i.e., WeChecker [38]).
③ Available documentation and usability. The Android SAST
tools must be operational and accompanied by available docu-
mentation, eliminating the human bias introduced by the efforts
required to discover how to build and use them. Thus, we
filtered out 7 tools that lacked proper documentation or not
working, such as DroidLegacy [39] (lack of usage docs).
④ Tools compatible with APK files. As the APK files provide
a comprehensive representation of an Android application, aid-
ing in more realistic vulnerability discovery and analysis, we
filtered out 10 tools that do not support APK files as input, such
as Android Check [40] and FindSecurityBugs [41].
⑤ Command-line interface. Given our objective of automating
large-scale scans, while ensuring seamless integration of tool
functions onto our provided unified platform VulsTotal, we tend
to choose tools that provide command-line interfaces. Web-
UI-based tools without programmable API functionality are
impractical. Therefore, we filtered out 2 tools. As an illustration,
Aparoid [42] was excluded due to the lack of API integration,
contrasting with tools like MobSF [12] which inherently in-
clude API, both were Web-UI-based.
⑥ Generalized vulnerability detection. We aim to understand
the extent of coverage for various vulnerability types by current
Android SAST tools. Thus, we focused on tools that offer com-
prehensive and general coverage across various vulnerability
types. Therefore, we excluded 21 tools that are designed to
detect specific vulnerability types, such as SMV-Hunter [43]
(detecting SSL/TLS MITM vulnerabilities only), CogniCrypt
[44] (detecting vulnerable cryptographic API usage only), and
FlowDroid [1] (using taint analysis to detect vulnerability types
related to sensitive data). Indeed, numerous empirical studies
are dedicated to the evaluation of tools designed for the detec-
tion of specific types [1], [14], [44].

Finally, we obtained 11 Android SAST tools: MobSF [12],
AndroBugs [6], QARK [7], APKHunt [45], SUPER [8],
JAADAS [11], DroidStatx [46], Marvin [13], Trueseeing [47],
AUSERA [10], and SPECK [9]. We have uploaded the full
candidate SAST tool list [21] and all the detailed information.
Table II provides a distilled yet holistic view of the key at-
tributes of each tool, including the star number on GitHub, the
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TABLE II
TOOL PROFILE. ‘‘# STARS’’ INDICATES THE NUMBER OF GITHUB STARS.

‘‘M.’’ REFERS TO WHETHER THE TOOL IS MAINTAINED. ‘‘B.|S.’’ DENOTES

SOURCE CODE OR BYTECODE ANALYSIS. ‘‘SYN.|SEM.’’ DENOTES

SYNTAX-BASED OR SEMANTIC-BASED CORE TECHNOLOGIES

Tool # Stars Last Update Version Language M. B.|S. Syn.|Sem.

MobSF 15.4k 12/04/2023 v3.6.0-Beta Python � S. Syn.
QARK 3.1k 04/05/2019 v0.9-Alpha.1 Python � S. Syn.

AndroBugs 1.1k 11/12/2015 v1.0.0 Python � B. Sem.
APKHunt 622 07/05/2023 07/05/2023 Go � S. Syn.

SUPER 411 12/10/2018 0.5.1 Rust � S. Syn.
JAADAS 338 04/12/2017 0.1-Alpha Java, Scala � B. Sem.

DroidStatx 115 12/09/2018 12/09/2018 Python � B. Sem.
Marvin 68 11/23/2018 0.1-Alpha Python � B. Sem.

Trueseeing 52 11/24/2023 2.1.9 Python � B. Sem.
AUSERA 30 10/09/2023 10/09/2023 Java, Python � B. Sem.
SPECK 11 10/10/2023 10/23/2022 Python � S. Syn.

last updated date, version, programming language, whether still
maintained or not, analysis based on source code or bytecode,
and core techniques, thus enabling a systematic comparison and
analysis of their potential effectiveness. We next outline the core
techniques of these tools from a structured perspective.

Core techniques within selected tools. These tools can be
divided into two categories based on the analysis objectives:
Source code analysis and Bytecode analysis. Upon obtaining
the analysis objects, tools employ Syntax-based or Semantic-
based technologies to detect vulnerabilities. Syntax-based tools
identify potential threats through predefined vulnerability pat-
terns such as sensitive APIs using techniques including regu-
lar expression matching, string matching, and AST (Abstract
Syntax Trees) matching. Semantic-based tools usually involve
control-flow and data-flow analysis to track execution paths and
examine data flows. Refer to Table II, among the selected tools,
the source-code analysis tools include APKHunt, SUPER,
SPECK, MobSF, and QARK. The first three tools use string-
based pattern matching on decompiled code, whereas MobSF
and QARK employ AST-based pattern matching. Bytecode
analysis tools generally leverage existing SAST frameworks for
semantic-based analysis. Examples include AndroBugs, which
uses a modified version of Androguard [48]; DroidStatx, which
implements customized control and data-flow analysis based on
Androguard; JAADAS, which employs Soot [49] and HEROS
[50] for taint and reachability analysis; Marvin, which inte-
grates Soot and SAAF [51]; AUSERA, which combines Soot
and FlowDroid [52]; and TrueSeeing, which deploys propri-
etary data-flow analysis.

B. Construction of the Platform VulsTotal

Based on the two steps above, we design and implement the
platform by introducing the following key phases.

1) Vulnerability Type Unification: Given that SAST tools
often introduce their own supported vulnerability identifiers,
there is a notable challenge in the automated comparison among
different tools. For instance, for the same type mentioned in
Fig. 2, AUSERA uses the identifier “Logging data leakage”
for the log data exposure vulnerability, while SUPER employs
“Unchecked output in Logs”. This discrepancy poses difficulty

Fig. 2. Example of mapping unified vulnerability types.

in automatically determining whether a given SAST tool suc-
cessfully identifies a specific vulnerability type. As such, there
is a need for a unified taxonomy that can streamline the process
of comparing different SAST tools. To address this, we con-
ducted a two-phase manual review by engaging three co-authors
for the vulnerability identifiers unification: ① Collection of sup-
ported vulnerability identifiers: Since none of the 11 selected
tools provided well-documented identifier sets, we manually
reviewed their documentation, configuration files, and source
code. This review involved extracting the vulnerability iden-
tifiers/descriptions and the corresponding detection rules from
each tool. Consequently, we obtained the vulnerability identifier
sets from the selected tools, each includes the vulnerability
identifiers, descriptions, and the corresponding source code
snippets that were implemented to detect these vulnerability
types. ② Construction of a unified taxonomy: The second phase
involved constructing a unified taxonomy using the collected
vulnerability identifier sets above.

Two key challenges arose during this phase: C1: Ambigu-
ity in vulnerability descriptions. Some tools use vague or
non-descriptive vulnerability identifiers, making it difficult to
determine the vulnerability types they support. As depicted
in Fig. 2, we discovered that 6 tools (such as AUSERA) can
detect log data exposure with similar vulnerability identifiers
and MobSF maintains a vulnerability description to present
such type rather than an identifier. Contrarily, QARK lacks both,
which necessitates diving into its source code to comprehend
the implementation of its detection rules. We then examined
whether the trigger code detected similar vulnerability features
as Log.(v|d|i|w|e|f|s) which is a regular expression
and indicative of log data exposure vulnerability to confirm
the mapping results. After a thorough review, we unified the
identifiers from the other five tools as “Log Data Exposure”,
since QARK’s Log vulnerability identified did not align with
them. C2: Variance in granularities. The granularity of the
vulnerability identifiers varied among tools. For instance, for
cryptographic vulnerabilities, SUPER’s description was less
detailed than that of other tools. SUPER merely used “Weak
Algorithm” as a vulnerability identifier, while others used more
fine-grained descriptions, such as “AES encryption issues” by
AUSERA. To resolve this, we delved deeper into their cor-
responding code implementation to ascertain the vulnerabil-
ity types they supported. After overcoming these challenges,

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 05:49:27 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: COMPREHENSIVE STUDY ON SAST TOOLS 3389

TABLE III
THE RESULTS OF 67 UNIFIED VULNERABILITY TYPES. (TYPES IN THE

GRAY INDICATE THAT THEY WERE ONLY DETECTED BY TWO OF THE

TOOLS. ‘‘# OUT OF SCOPE’’ INDICATES THE NUMBER OF SECURITY

ALERTS RATHER THAN VULNERABILITY TYPES)

Category Unified Vulnerability Types

M
ob

SF

Q
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K

A
nd

ro
B
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s

A
P

K
H

un
t

SU
P

E
R

JA
A

D
A

S

D
ro

id
st

at
x

M
ar

vi
n

T
ru

es
ee

in
g

A
U

SE
R

A

SP
E

C
K

Sensitive
Data

Exposure
Risks

Webview Password Exposure � � �
Logging Data Exposure � � � � �
External/Internal Data Exposure � � � � � �
Cache Data Disclosure � �

Temp File Data Exposure � � � �
SQLite Data Exposure � �

SMS Data Exposure � � � � � �
Clipboard Data Exposure � �

Hardcoded IP Exposure � � � �
Hardcoded Email Exposure � �

Device ID Exposure � � �
Android ID Exposure � �

Hardcoded URL Exposure � � �
Hardcoded Sensitive Data Exposure � � � �

Insufficient
Encryption

Risks

Insecure Base64 Encryption � � �
Insecure Blowfish Encryption � �

Improper Handle DES Encryption � � � � � � � � �
Improper Handle AES Encryption � � � � � � � � �
Improper Handle RSA Encryption � � � � �
Improper Handle RC4 Encryption � � �
Improper Handle Insecure Hash � � � � � �
Use Insecure Random � � � � � �
Weak CBC Cipher Modes � �

Hardcoded IV Issue � � �
Improper Package Hardcoded � � � � � � �

Security
Misconfig

Risks

Misuse Empty Pending Intent Issue � �
Improper Receiver Registration � � �
Misuse Implicit Intent Issue � � � � �
Exported Not Protected Components � � � � � � � � � �
Unprotected Content Provider � � � � � � � � � �
Sticky Broadcast Intent Issue � �
ContentProvider Permissions Issue � �

Manifest Screenshot Harvest � � � � �
Manifest Backup Issue � � � � � � � � � �
Manifest Debug Issue � � � � � � � � � �
Mode World Storage Readable Issue � � � � � � � � � �
Mode World Storage Writable Issue � � � � � � � � � �

Insecure
Code

Execution
Risks

Dynamic Code Loading Issue � � � �
Runtime Command Execution Issue � � � � �
Rooted Device Detection � � � � �
Super User Privileges � �

Sensitive Functionality (loadlibrary) � � �
SQL Injection � � � � �
Fragment Injection � � � � � �
ContentProvider Openfile � � �

Insecure
Network
Config
Risks

Using HTTP Issue � � � �
ClearText Traffic Issue � � � � �
Debug CA Configuration Issue � �
Use Expired Certificate � �
Use SHA1_MD5 Certificate � �
Android Debug Certificate � �

Insecure AllowUserCA � � � �
Use Insecure Socket � �
Use Firebase exposed � �

Use Insecure SSL Socket Factory � � � �
Use Invalid Hostname Verification � � � � � � �
Use Invalid Server Verification � � � � � � �
Use Allow All Hostname Verification � � � � � � � � � �
WebView Cert Validation Issue � � � � � � �
Webview Sop Warning � �

Webview JavaScript Execution � � � � � � � � �
Webview Java Objects Exposure � � � � � � � � � �
Webview Insecure Load Plugin � �

Webview Local File Access � � � � � � �
WebView Local File Cleanup � �

WebView Insecure URL Loading � � �
WebView Remote Debugging � �

Metadata
# Overlapped vulnerability types 39 21 27 45 32 15 21 28 21 40 23
# Unique vulnerability types 12 2 5 15 0 3 4 3 5 1 4
# Out of scope 26 2 21 16 14 1 13 15 8 0 6

which took us 3 person-months of rigorous type implementation
review, we built the unified taxonomy by combining unified
vulnerability types. Vulnerability types are included only if
supported by at least two tools. To enhance the clarity of
types, we renamed them by using a unified identifier to clearly
reflect the root causes they represent. In the end, as displayed
in Table III, we established a unified taxonomy including 67
vulnerability types. To increase clarity and navigability, inspired
by Chen et al.’s taxonomy [10], we grouped the 67 distinct types
into 5 broader categories. We manually categorized each type
into five categories based on specific descriptions provided by
OWASP Top 10. Specifically, three co-authors independently
reviewed the “Security Weaknesses” section of each OWASP
risk page [53] and the detection rules (source code and rule doc-
umentation). Afterward, we conducted discussions and cross-
validation to ensure consistency. This structure enhances the

identification of vulnerability types and offers an overarching
view of the tools’ detection capabilities. This unified taxonomy
serves as a reference point for VulsTotal, facilitating an auto-
mated comparison of the detection capabilities of the selected
tools.

2) Vulnerability Report Normalization: The challenge we
encountered involved disparate report formats and contents
across various SAST tools, ranging from HTML web pages and
terminal outputs to TXT and JSON files, impeding large-scale
automated analysis. For instance, MobSF generates HTML re-
ports, whereas SPECK prints reports in the terminal. Tools such
as SUPER offer selectable formats including JSON and TXT.
To overcome this, we modified the source code of these tools,
aligning their report output to a consistent and processable
file form. Importantly, these modifications did not affect the
tools’ detection logic, ensuring the authenticity of the detection
results. Consequently, this normalization process ensured a uni-
form reporting format (i.e., TXT), facilitating a fair comparison
and evaluation of various tools.

Next, we turned our attention to aligning report contents.
The disparity in vulnerability types and descriptions, along with
information unrelated to vulnerabilities in the reports, added an-
other layer of complexity to our analysis. To solve this, we built
a separate parser for each tool. These parsers were made to care-
fully pick out the vulnerability types and descriptions from the
reports by regular matching, while also removing unnecessary
information. Therefore, we achieved standardized and simpli-
fied content for all tool reports. This made it convenient to com-
pare and understand the detection results from different tools.

We enhanced VulsTotal with automation for scanning mul-
tiple APKs and integrated each tool’s vulnerability detection.
Ultimately, we choose the latest successfully configured version
of each tool listed in Table II and use their default configura-
tion. After scanning with detection interfaces and using parsed
results, we mapped vulnerabilities to corresponding types in
taxonomy (Table III), producing a standardized result report.
It is worth noting that vulnerability type unification relies on
the vulnerability mapping database, which is extensible.

C. Construction of Benchmarks

To evaluate the performance of tools, we collected two
kinds of benchmarks: synthetic benchmarks (with injected
vulnerabilities) and CVE-based benchmarks (with real-world
vulnerabilities).

1) Synthetic Benchmarks: We collected synthetic bench-
marks from both the academy and industry. Although many
different kinds of synthetic benchmarks such as DroidBench
[54], ICC-Bench [3], and UBCBench [14] are widely used in
the academy, they are used to evaluate the effectiveness of static
taint analysis tools and not suitable under our evaluation sce-
nario because selected SAST tools focus on detecting common
vulnerability types instead of specific types. By referring to the
evaluation and comparison results in [17], we choose GHERA
[55] since it is a representative benchmark [55] maintaining
more vulnerability types and providing both benign and secure
versions for each vulnerability type.
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Additionally, some industry companies and institutions de-
veloped vulnerable apps by manually injecting vulnerabilities.
From this side, we take MSTG app [19] and PIVAA app [20]
into account, where MSTG is maintained by OWASP and
the latter one is developed by an industry company named
High-Tech Bridge [56]. The MSTG serves as a comprehensive
resource for mobile app security testing, providing valuable
insights into identifying and addressing potential vulnerabili-
ties. Meanwhile, the PIVAA app showcases real-world security
issues and serves as an educational tool to enhance app devel-
opers’ understanding of secure coding practices.

2) CVE-Based Benchmark: To create a verified real-world
benchmark containing vulnerabilities caused by Android app
developers, we chose the CVE database [57] as the source,
which maintains an open list of known real-world vulnera-
bilities found in specific software products. ① Initially, we
filtered the CVE database for entries containing the keyword
“Android” as of 2023-09-12, which yielded 8,451 vulnerabil-
ities. ② In the remaining CVE entries, we found that some
vulnerabilities lie in C/C++ files which are beyond our research
scope. We thus filtered out 2,042 such CVE entries. ③ To
maintain the benchmark’s focus on Android applications, we
excluded vulnerabilities tied to multiple platforms (e.g., Win-
dows), Android underlying components (e.g., Android media
framework), generic Android tools (e.g., Jadx [58]) and so on.
Consequently, we filtered out 4,029 CVE entries. ④ Since we
focus on developer-related issues within Android apps, we also
excluded 277 CVEs only related to the browser kernels, as
well as those marked as controversial, disputed, or unspeci-
fied, such as CVE-2021-43512 [59]. ⑤ After excluding cross-
language vulnerabilities (such as out-of-bound errors) that do
not arise from Android development defects, 2,079 Android-
specific CVE entries remained. ⑥ Finally, as we aim to gather
as many vulnerabilities as possible about the specified app and
version, we filtered out 46 CVE entries that did not specify the
version information, while 2,033 CVE entries remained.

To construct a comprehensive benchmark aligned with the
supported vulnerabilities across 11 tools, covering diverse vul-
nerability types for a thorough evaluation of Android SAST
tools, we further refined 2,033 entries. Based on the taxonomy
and the unique vulnerability types supported by each tool, we
labeled the corresponding vulnerability types for these CVEs
based on their descriptions and supplementary information. To
avoid potential bias in the labeling process, detailed informa-
tion on each CVE was rigorously reviewed and independently
labeled by three co-authors. In case of disagreement, the final
decision was made by majority voting. In total, we assigned
2,050 labels to 2,033 CVEs since certain CVEs include up to
two types. Of these, 1,722 labels correspond to types supported
by selected tools, while 328 labels correspond to types not
supported by any selected tool, thus outside the study’s scope.

Regarding the 1,722 labels1 in our research scope, we at-
tempted to download all available vulnerable APKs as described
in their respective CVE entries. Specifically, we have spent sub-
stantial time and effort searching in APKPure [60], APKMonk

1In this paper, the term “label” denotes “vulnerability instance”.

[61], Google Play [62], and other app markets, as well as the
AndroZoo database [63]. Finally, we found available APKs
corresponding to 1,316 instances. It is noteworthy that there is
a long-tail distribution [64] in vulnerability types, identifying
1,143 instances just involving 3 specified vulnerability types.2

Moreover, we could not feasibly scan all instances due to re-
source constraints. Focusing on the remaining 173 instances,
we noted a maximum of 30 instances per single type. There-
fore, we opted to randomly select 30 instances from each of
these three types to be included in the CVE benchmark for
effectiveness evaluation. Subsequently, for these three types,
we incrementally added 10 instances to each type until they
all reached 60, covering four different states. We continuously
calculated the Recall value for all tools in these four states on
the CVE benchmark and observed that across the four states,
the sample variance of effectiveness3 for each tool on the CVE
benchmark was under 0.1%. Based on this finding, we deduced
that including all 1,143 instances versus including 90 sam-
ples (30 per type) would have a negligible effect on the final
results.

Therefore, we chose 30 samples per type, resulting in the
CVE benchmark including 250 CVEs encompassing 229 APKs,
262 vulnerability instances that covered 34 vulnerability types
named CVE-based benchmark. All labeling data, detailed
description of APK collection, Recall of four calculations, and
the CVE-based benchmark are released on GitHub [21] and
Zenodo [65].

III. STUDY OF THE TOOL DETECTION CAPABILITY

With the aid of the ability of VulsTotal, our study addresses
the following research questions to evaluate the detection capa-
bility of the 11 selected tools comprehensively.

• RQ1: (Vulnerability type coverage) Are these SAST
tools capable of covering the unified vulnerability types
that are supported by VulsTotal? What is the coverage of
vulnerability types in the used benchmarks?

• RQ2: (Vulnerability type consistency) Is the Android
vulnerability landscape documented in CVE consistent
with the coverage provided by the selected SAST tools?
What about GHERA and MSTG&PIVAA?

• RQ3: (Detection effectiveness) How effective are these
SAST tools for vulnerability detection on different bench-
marks? How do these tools perform in terms of the same
vulnerability types?

• RQ4: (Time performance) What are the different statuses
of time performance for these SAST tools?

A. RQ1: Vulnerability Type Coverage

1) Setup: The range of vulnerability types a SAST tool can
detect serves as a significant measure of its overall performance.
To this end, we aim to explore the vulnerability type coverage

2The types are respectively “Use Invalid Server Verification”, “Use Invalid
Hostname Verification”, “Use Allow All Hostname Verification”.

3We quantified it by using B_Recall, which is defined in Equation (1).
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Fig. 3. Vulnerability type coverage of Android SAST tools in different benchmarks.

of each tool on the unified taxonomy and the three benchmarks
collected in § II-C. To achieve it, we further categorize the
vulnerability types based on the proposed taxonomy into three
groups: ① Overlapped types: vulnerability types supported
by multi-tools, ② Unique types: vulnerability types supported
only by a single tool, and ③ Unsupported types: unsupported
vulnerability types by all tools.

2) Result: As depicted in Table III, we included the number
of both overlapped and unique vulnerability types supported
by each tool. Further, types related to code-quality issues only
rather than vulnerabilities, and thus out of our research scope,
are also tracked and represented as “# Out of scope”. For
example, the “MANIFEST_GCM” supported by AndroBugs
indicates that if the app’s “minSdkVersion” is less than 9,
then the app cannot use Google Cloud Messaging (GCM).
This is a compatibility issue rather than a security vulnera-
bility, so it falls outside our research scope. Based on it, we
found that these tools typically lack comprehensive coverage
of the overlapped vulnerability types in VulsTotal. Indeed, cov-
erage tends to vary significantly among different tools. No-
tably, APKHunt boasts the highest coverage at 67% (45/67),
with AUSERA coming in second at coverage of 60% (40/67),
whereas JAADAS lags with the lowest coverage, only 22%
(15/67). Refer to Table II, newer tools like APKHunt typically
exhibit better coverage than older tools like JAADAS. This
may be because newer tools can cover the vulnerability types
that are constantly being newly discovered. However, we em-
phasize that the relationship between tool age and coverage
does not vary linearly. Moreover, we discovered that there are
certain types that most tools fail to support (only detected by
two selected tools), which are highlighted in Table III. For
instance, within the “Insecure Network Config Risks” cate-
gory, no more than three tools support 45% (10/22) of the
types. This emphasizes the need for tool developers to focus
on detecting these frequently overlooked types to enhance the
comprehensiveness of their type coverage. Furthermore, we no-
ticed a significant overlap in types supported by different tools,
suggesting a shared understanding among developers about
the significance and universality of certain types. Specifically,
nearly all tools support detecting vulnerability types in Android-
Manifest.xml, like “Manifest Backup/Debug Issue” (excluding
SPECK) and “Exported Not Protected Components” (excluding
JAADAS).

Fig. 4. Vulnerability types supported by VulsTotal (in pink) and each
benchmark (in blue). “Unique”: supported by one tool only.

Fig. 5. Vulnerability types injected in each benchmark (in blue) while
unsupported by all the 11 tools (in pink).

As displayed in Fig. 4, the alignment between the vulnera-
bility types injected in the existing three benchmarks and the
overlapped types in taxonomy is not as high as anticipated.
The consistency percentages against GHERA, MSTG&PIVAA,
and CVE-based are 35.82%, 35.82%, and 46.27%, respectively.
Further, we recorded the number of overlapped and unique
types covered by each tool across the three benchmarks (refer
to Fig. 3). Remarkably, no tool manages to cover all vulner-
ability types in three benchmarks. We further found that AP-
KHunt achieves the highest coverage on all three benchmarks
meanwhile, with 39% on GHERA, 50% on MSTG&PIVAA,
and 88% on CVE-based respectively. Further, AUSERA also
attained the second-highest coverage across three benchmarks,
with 29% on GHERA, 43% on MSTG&PIVAA, and 71%
on CVE-based. However, JAADAS simultaneously achieved
the lowest coverage across three benchmarks, with 12% on
GHERA, 14% on MSTG&PIVAA, and 26% on CVE-based.
Similarly, this demonstrates the suboptimal coverage of the
selected tools across the three benchmarks.

Additionally, through Fig. 5, there are still many unsupported
types by all tools (45.10%, 23/51 on GHERA and 43.18%,
19/44, on MSTG&PIVAA, the detailed list is also available
on GitHub [21]). The results on synthetic benchmarks show
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Fig. 6. Top 10 vulnerability types in two categories from labeled CVEs. Notably, there’s a big difference in the number of labels identified in CVE from
different vulnerability types in the supported types. To make it easier to understand, we used a logarithmic scale with a base of 10, increasing in multiples
of 10.

that there is a significant gap between the supported types of
these SAST tools and the types injected in these benchmarks.
This inconsistency highlights the need for a reliable benchmark
to align the coverage of types supported by existing Android
SAST tools. However, the vulnerability types in the CVE-based
benchmark are a subset of the types supported by these SAST
tools, as the latter was the baseline for the former’s construction.
This means that all types in CVE-based are supported by tools,
so the corresponding number in Fig. 5 is 0.

Answer to RQ1: ① All evaluated tools exhibit significant
gaps in their support for 67 unified vulnerability types. No
single tool offers comprehensive support; the highest and
lowest coverage rates are 67% and 22%, respectively. This
highlights the imperative for a comprehensive vulnerability
scan of an Android app, necessitating the collaborative use of
multiple SAST tools. ② A disparity exists between the vul-
nerability types supported by these tools and those present
in two synthetic benchmarks, with an inconsistency rate of
45.1%(GHERA) and 43.18%(MSTG&PIVAA).

B. RQ2: Vulnerability Type Consistency

1) Setup: Firstly, since Android-related CVEs provide
insights into real-world vulnerabilities, we try to explore
the consistency between the vulnerability types included in
Android-specific CVEs and those supported by all 11 tools.
Based on the final-filtered 2,050 labels from § II-C2, we in-
corporated them and 46 CVEs without specified app version
(involving 47 labels) excluded in § II-C2 into discussion regard-
ing their reflection of vulnerability type distribution in CVEs.
Based on their corresponded vulnerability types, we categorized
the labels into two groups: 1) Supported types, included in
the set of vulnerability types supported by the 11 tools, and 2)
Unsupported types. Moreover, refer to § III-A, we discovered
a huge gap between the supported types and those available
in the synthetic benchmarks. We further analyzed this incon-
sistency here. For types injected in synthetic benchmarks, we
also categorized them into two groups above. Finally, since
the OWASP Mobile Top 10 [53] (OWASP in short) represents
the top 10 prominent security risks in mobile applications, we
further analyzed the consistency between the tool-supported
types and those outlined in OWASP. Subsequently, we will
analyze type consistency from these three perspectives.

TABLE IV
THE # OF THE VULNERABILITY TYPES, LABELS, AND CVES

IN TWO CATEGORIES

# Vulnerability Type # Vulnerability Label # CVE

Supported Types 36 1,741 1,723
Unsupported Types 34 356 356

2) Result: Android-specified CVE vulnerability type
consistency. We counted the number of vulnerability types,
labels, and the corresponding CVEs in these two categories and
listed them in Table IV. There are 36 supported types with 1,741
labels and 34 unsupported types with 356 labels. To simplify
the presentation, we ranked the types in descending order based
on the number of labels in each type. Fig. 6 shows the top 10
types and their label counts for both categories. We observed
that among the supported types, “Use Invalid Server/Hostname
Verification”4 has the highest label number at 1,449, signifi-
cantly surpassing other types. The second most prevalent type
is “Hardcoded Sensitive Data Exposure”, totaling 59 labels.
Further, among the unsupported types, the most frequent is
“Inadequate Authentication and Authorization” totaling 39, fol-
lowed by “Path Traversal” with 27 labels.

We further classified these types based on whether they could
be detected using syntax-based or semantic-based analysis men-
tioned in § II-A and found that 79% (27/34) of the unsupported
types were challenging to detect without a deep understanding
of the application’s scenario logic. In other words, these vul-
nerability types do exceed the ability of SAST tools to abstract
and track complex vulnerability patterns to a certain extent. For
example, “Lack of Input Validation” requires tracking control
and data flow to identify deficiencies in validation branching
decisions, as well as conducting complex checks such as length
validation and type checking according to the specific appli-
cation contexts to verify that the code is robust, well-placed,
and triggered correctly in application contexts. Conversely, the
selected tools consistently demonstrated the ability to identify
vulnerability types without requiring deeper contextual under-
standing, such as detecting insecure encryption algorithms like

4This category contains three vulnerability types which are “Use Invalid
Server Verification”, “Use Invalid Hostname Verification” and “Use Allow
All Hostname Verification” respectively.
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TABLE V
MAPPING OF OWASP MOBILE TOP 10 2024 TO CATEGORIES

IN UNIFIED TAXONOMY

OWASP Mobile Top 10 2024 Categories in Unified Taxonomy

M1: Improper Credential Usage

Sensitive Data Exposure RisksM6: Inadequate Privacy Controls

M9: Insecure Data Storage

M5: Insecure Communication Insecure Network Config Risk

M10: Insufficient Cryptography Insufficient Encryption Risks

M4: Insufficient Input/Output Validation
Insecure Code Execution Risks

M8: Security Misconfiguration
Security Misconfig Risks

M7: Insufficient Binary Protections None

M2: Inadequate Supply Chain Security None

M3: Insecure Authentication/Authorization None

“AES/ECB” mode, by recognizing known insecure sensitive
API usage patterns.

Synthetic benchmarks vulnerability type consistency.
Similarly, among the 23 vulnerability types unsupported by all
11 tools in GHERA from Fig. 5, there are 65% (15/23) types
that posed challenges for detection using the common meth-
ods employed by the selected SAST tools, which include both
syntax-based or semantic-based analysis. Notably, vulnerability
types injected in MSTG&PIVAA are detectable just by syntax-
based pattern matching. These observations underscore the lim-
itations of existing SAST tools that depend solely on identifying
sensitive API usage through regular-expression-based or string-
based pattern matching. It underscores the necessity for more
precise pattern extracting tailored to specific types, such as
privilege escalation, along with the deeper adoption of advanced
detection techniques such as data and control flow analysis.
These enhancements are particularly crucial for accurately iden-
tifying complex vulnerabilities that involve scenario-specific
logic.

OWASP Mobile Top 10 vulnerability type consistency.
Given the OWASP encompassing specific vulnerability types,
we adopted its ten overarching categories as our baseline for
comparison. Refer to Table III, our taxonomy consolidates 67
unified types into five major categories, and we mapped these
categories to OWASP categories, discovering that each category
can be mapped to certain categories in OWASP, indicating the
taxonomy’s practical significance with the high consistency
with OWASP. Specifically, as displayed in Table V, excluding
M2, M3, and M7, all other OWASP-defined risks can match
the categories in the taxonomy. Similarly, each unique type
supported by a single tool also falls into one of the OWASP
categories. Notably, the lack of support for M3 coincides with
the unsupported types (i.e., “Inadequate Authentication and Au-
thorization”) in CVEs, as shown in Fig. 6. This not only high-
lights the consistency of the distribution of vulnerability types
in the real world but also emphasizes that these unsupported
types should be a key focus for future tool development and
optimization given their prevalence. The detailed mapping of
types (including those within the taxonomy and those uniquely
supported by tools) to their corresponding OWASP category is
available on our GitHub [21].

Answer to RQ2: ① We found significant gaps be-
tween the vulnerability types included in Android-specific
CVEs, those in synthetic benchmarks, and the types sup-
ported by the tools. Specifically, none of the selected tools
support 34 types in Android-specific CVEs, 19 types in
MSTG&PIVAA, and 23 types in GHERA ② Further analysis
highlights that the unsupported types are primarily those
challenging for most SAST tools to cover. Specifically, 79%
of 34 unsupported types in Android-specific CVEs and 65%
of 23 unsupported vulnerability types in GHERA could not
be detected using pattern matching only.

C. RQ3: Detection Effectiveness

1) Setup: The CVE-based benchmark exhibits an uneven
distribution of vulnerability instances. For instance, there are
24 instances under “Using HTTP Issue” but only one instance
under “Weak CBC Cipher Mode”. To ensure a comprehensive
evaluation of the selected tools, we further constructed an-
other uniform benchmark named CVE-U by applying an under-
sampling technique [66] to achieve a more balanced distribution
of vulnerability instances. Specifically, we sampled a maximum
of three instances for each type of vulnerability. This threshold
was chosen to balance the distribution, considering the preva-
lent types and the limited availability of application resources.
Our analysis then compares the effectiveness of the tools using
both the original, imbalanced CVE-based benchmark and the
newly balanced CVE-U benchmark.

To investigate the effectiveness of selected tools for vulnera-
bility detection on these 4 different benchmarks, we leverage the
platform VulsTotal to analyze all the instances. Given the over-
lap between the tools in [4] and our study, we set a 15-minute
timeout pre scan based on its time performance finding. Our
results in Fig. 9 showed that all tools had a maximum average
scan time below 15 minutes, confirming the validity of this
timeout.

All experiments are performed on an 8-core Linux machine
with 32 GB RAM (used consistently throughout this study.) We
will discuss the effectiveness of 11 tools based on Precision,
Recall, False Positive Rate (FPR), and F1-score. Given that
ground truth is only available for known vulnerabilities in
benchmarks i.e., CVE-based, CVE-U, and MSTG&PIVAA,
it is important to acknowledge that these sources cannot
guarantee the absence of other vulnerabilities. Therefore,
following the common practices [67], [68], we only calculate
the customizable Recall named B_Recall (Benchmark Recall)
for them to reflect whether the selected tools could find known
and documented vulnerabilities. The calculation method of
B_Recall is as follows.

B_Recall =
# Correctly Identified Vulns

# All Known Vulns in the Benchmark
(1)

To deeply understand the selected tools’ effectiveness in
unified vulnerability types, we further explore their detection
capabilities on specific types. As detailed in Fig. 8, we ag-
gregated instances from all benchmarks for each vulnerability
type, focusing on those with at least five instances to ensure a
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Fig. 7. Effectiveness of Android SAST tools in VulsTotal on different benchmarks. FPR refers to False Positive Rate. Since the supported vulnerability
types of these SAST tools on these benchmarks are various, we highlight that the metrics shown in Fig. 7 cannot be used for comparison of relative abilities
across different tools, but their absolute values illustrate the detection capability on specific types of different benchmarks.

meaningful evaluation. This approach allowed us to assess the
B_Recall of tools in detecting these selected types, providing a
granular view of individual tool performance and maintaining
credibility by avoiding types with fewer instances.

2) Result: Fig. 7 shows 11 tools exhibit broad abilities in
vulnerability detection, yet many underperform expectations.

a) Effectiveness on the GHERA benchmark: As shown in
Fig. 7(a), we marked the F1-score for all tools on GHERA along
with the number of supported vulnerability cases. We found
tools show varied effectiveness on GHERA to balance Preci-
sion and Recall. For example, AUSERA’s highest F1-score of
82.6%, bolstered by a 90% Recall, shows strong true positive
(TP) identification. Despite 76% Precision, indicating some
false positives (FP) with a 28.6% FPR, it balances Precision
and Recall well, highlighting its effective detection. However,
certain tools have struggled to balance Recall and Precision,
leading to a poor F1-score. For instance, QARK only achieved
a Recall of 30.8%, indicating missing many TPs and lead-
ing to an F1-score of just 42.1%. APKHunt got a Recall of
85.7%, covering the majority of TP. But it obtained a Preci-
sion at a mere 55.8%, suggesting a high rate of 67.9% FPR.
Similarly, SUPER shows an imbalance with a Precision of
66.7% and a Recall of just 33.3%, leading to an F1-score
of only 44.4%. The remaining tools achieve a more balanced
effectiveness, leading to medium-level results. For example,
AndroBugs attained a 75.9% F1-score (78.6% Precision and
73.3% Recall) and JAADAS exhibited a 70.6% F1-score (75%
Precision and 66.7% Recall). In general, most tools show much
underreporting on GHERA, resulting in an F1-score of no more
than 85%.

b) Effectiveness on the MSTG&PIVAA benchmark:
As shown in Fig. 7(b), JAADAS, DroidStatx, and Truesee-
ing achieved 100% B_Recall, indicating these tools have ef-
fective detection capabilities for the types supported by this
benchmark. Additionally, all tools, except Marvin and QARK,
achieved more than 75% B_Recall, underscoring their effective-
ness. This can be attributed to the vulnerabilities injected in this
benchmark exhibiting simpler patterns compared to GHERA
for the same type. Furthermore, compared to other tools, Mar-
vin and QARK showed lower B_Recall of 35.7% and 33.3%
respectively, indicating potential limitations in their detection
methods when identifying types of MSTG&PIVAA. Overall,
most tools validated the utility of simple vulnerability patterns
on this benchmark.

TABLE VI
TOP FIVE VULNERABILITY TYPES WITH THE MOST INSTANCES IN

CVE-BASED AND CVE-U

Vulnerability Types # Instance in CVE-Based

Hardcoded Sensitive Data Exposure 33
Use Invalid Server Verification 32
Use Invalid Hostname Verification 32
Use Allow All Hostname Verification 30
Using HTTP Issue 24

c) Effectiveness on the CVE benchmarks: Generally,
there is no significant difference in the performance of these
tools between synthetic and real-world benchmarks refer to
Fig. 7. For example, AUSERA achieved a B_Recall of 89.7% on
CVE-based and 90.5% on GHERA. This can be attributed to the
fact that these tools rely heavily on pattern matching, detecting
vulnerabilities based on the usage of specific sensitive APIs
that are easy to find. This approach does not involve complex
contextual analysis or cross-function examination. As both the
selected synthetic and real-world benchmarks mainly consist of
vulnerability types that are identified by the presence of certain
patterns in the usage of sensitive APIs, this consistency makes
the effectiveness of these benchmarks not much different.

Refer to Fig. 7(d) and 7(c), The tools exhibit a consistent
performance trend across both CVE-based and CVE-U bench-
marks, with top-performing tools showing high B_Recall in
both benchmarks, while underperforming tools display low
B_Recall across them. SPECK achieved high B_Recall at
91.8% in CVE-based and 93.1% in CVE-U. APKHunt and
DroidStatx followed closely with B_Recall at 94.9% and 92.6%
in CVE-based and 87.9% and 86.2% in CVE-U, respectively.
Notably, SUPER had the lowest B_Recall both at 52.3% in
CVE-based and 38.9% in CVE-U, with QARK performing
slightly better at 68.1% in CVE-based and 40% in CVE-U.
Due to space limitations, we present only the top 5 CVE-based
vulnerability types with the most instances in Table VI. Full in-
stance numbers per type in CVE-based are available in GitHub
[21]. Comparing the B_Recall of CVE-based with CVE-U,
we found that all tools except SPECK exhibited a marked
improvement. As shown in Fig. 8, Fig. 7(c) and Table VI,
we observed that types that frequently occur in CVE-based
and are effectively detected by tools contribute to the over-
all improved performance across CVE-based. For example,
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Fig. 8. Effectiveness of Android SAST tools in detecting specific vulnerability types that appear over five times across the three benchmarks.

“Hardcoded Sensitive Data Exposure” has the most instances
(33), as referred to Table VI. Across the four supported tools in
Fig. 8(a) and Fig. 7(c), those with stronger detection capabilities
in this type perform better in CVE-based, while Marvin lags
due to weaker detection. Since CVE-based reflects real-world
vulnerability distribution to some extent, high detection perfor-
mance on these frequent types implies the tool’s effectiveness
in real-world applications, suggesting that tools should focus
more on detecting these frequent vulnerability types.

d) Effectiveness on single vulnerability types: Note that
this discussion is based solely on tools’ B_Recall, as their Preci-
sion was unable to be calculated due to the nature of our bench-
marks. As shown in Fig. 8, most tools generally perform well in
detecting various supported types, especially for “Logging Data
Exposure”, where all tools score over 90% B_Recall. However,
there are notable variations in their performance regarding spe-
cific types. For example, SUPER shows poor performance at
25% B_Recall for “SQL Injection” while the other four tools
achieved a B_Recall of at least 75%.

We further analyze tools’ performance against specific types
ordered by instance frequency, for a granular insight. For “Hard-
coded Sensitive Data Exposure” in Fig. 8(a), MobSF excels
at B_Recall of 93.9%, closely followed by Trueseeing and
APKHunt in B_Recall of 93.1% and 84.8%. MobSF’s supe-
riority arises from its ability to search for hardcoded sensitive
data like “passwd” in both source code and string pools within
“string.xml” files. Trueseeing achieves high efficacy through
database storage for control and data flow analysis to identify

sensitive values based on characteristics like entropy and length.
However, Marvin performs poorly in this type as B_Recall
of 40%, primarily due to its narrow focus on specific sce-
narios of sensitive data, such as passwords for services like
Twitter and Apache credentials, rather than offering broader
coverage. Regarding “Use Invalid Server Verification” depicted
in Fig. 8(c), APKHunt, AndroBugs, and JADDAS showed
high B_Recall (100%, 96.9%, 93.3% respectively). APKHunt
achieved such performance by relying on rough regular expres-
sion matching for decompiled source text, whereas JAADAS
and AndroBugs achieved such performance by applying a com-
bination of data and control flow analysis built upon byte-
code parsing. QARK’s B_Recall is only 81.3%, largely due
to incomplete decompilation of source code, exemplified by
numerous empty or meaningless variables in the decompiled
output of a real APK.5 Marvin and DroidStatx missed the empty
checkServerTrusted method in X509TrustManager
due to reliance on bytecode analysis with strict adherence to
the pattern “public checkServerTrusted(...)” and
oversight of the “public final” modifier, resulting in the
low performance as 90.3% and 83.9% respectively.

Regarding “Using HTTP Issue” in Fig. 8(e), all tools ex-
cept AndroBugs demonstrate high B_Recall (100%). An-
droBugs potentially lacks tailored detection for constructing
HTTP connections via string concatenation with HttpURL-
Connection, particularly when URLs are created directly

5350apkPure.apk in CVE-based.
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with http://. Instead, it focuses more on instances explicitly uti-
lizing HttpHost classes for HTTP connection establishment,
resulting in the suboptimal performance of 91.7% B_Recall.
Fig. 8(f) displays that except for SUPER, all supported tools
achieve high performance (over 95% B_Recall) in detecting
“Exported not Protected Components” due to the straightfor-
ward detection logic, employing pattern matching for explicit
or implicit exported components in the “AndroidManifest.xml”.
With 33.3% B_Recall, SUPER’s inefficiency stems from ex-
tensive content loss during manifest file decompilation rather
than flawed detection rules. SPECK misses a few cases because
it focuses on broadcast and service detections, lacking activity
checks, resulting B_Recall of 95%. In Fig. 8(g), MobSF, AP-
KHunt, AUSERA, and Trueseeing effectively detect “Logging
Data Exposure” as all achieve 100% B_Recall, the strategies
they employ to achieve low false negative rates differ. While
APKHunt and MobSF employ more loose rules by identifying
sensitive API calls, like log.e() in decompiled source code,
without validating data sensitivity or tracing its origin back
to UI input. In contrast, AUSERA and Trueseeing use data
flow analysis to confirm sensitive information, with AUSERA
improving precision by tagging specific sensitive identifiers.
As for SUPER, which achieved 93.3%, it uses regular expres-
sion matching on decompiled code to search sensitive APIs
involved in logging, but its reliance on hardcoded rulesets may
miss variable-type sensitive data. In “SQL Injection” refer to
Fig. 8(h), limited performance (75%) of SPECK is due to its
focus on ContentProvider SQL injection, omitting SQLite and
other contexts. SUPER underperforms due to narrow pattern
matching without contextual consideration leading to many
FNs. As shown in Listing 2, to detect SQL injection, SUPER
uses regex displayed at Line 2 to match. However, as shown in
Lines 3-16 from Listing 2,6 the query string in vulnerable code
is constructed by concatenating user input and passing it to the
parameter query. But SUPER just detects operations involv-
ing string concatenation, causing FNs. As displayed in Fig. 8(k),
QARK and Marvin miss many cases related to “WebView Local
File Access”, resulting in a B_Recall of 28.6% and 22.2%
respectively. Although Marvin conducts fine-grained checks by
validating sensitive API-involved exported activities and ana-
lyzing exposure surfaces. Its overly strict rule implementation
requires browsing the file scheme in the export activity, leading
to severe false negatives. Due to space constraints, we provide
detailed analysis for the remaining types on GitHub [21].

e) Technical reasons underlying their effectiveness:
To ensure accuracy and reliability, two authors independently
conducted the analysis, mediated disagreements with a third
author, and the entire team reviewed the final results for
consistency. As mentioned in § II-A, all selected tools use
pattern matching as core techniques. Therefore, their effec-
tiveness relies heavily on hard-coded patterns, making it hard
to capture vulnerable behaviors precisely. Specifically, coarse-
grained pattern definitions boost B_Recall but invite false
positives (FP); overly fine precision increases the risk of
false negatives (FN). An abundance of patterns for the same
types reduces misses but escalates FPs, while overly narrow

6The vulnerable code is from “SQLite-execSQL-Lean-benign” in GHERA.

1 // The vulnerable source code
2 private void openFileOutputWorldWritable (String filename)

throws Exception {
3 getContext ().openFileOutput (filename , Context.

MODE_WORLD_WRITEABLE );}
4 // The vulnerable decompiled source code
5 private void openFileOutputWorldWritable (String filename)

throws Exception {
6 getContext ().openFileOutput (filename , 2);}

Listing 1. The code example of “Mode World Storage Writable Issue”.

definitions lead to substantial FNs. Applied to the selected tools,
APKHunt excels in four benchmarks by using simple regular-
expression matching on decompiled source code, with coarse-
grained and abundant patterns leading to high B_Recall but also
many FPs in GHERA. For example, when detecting “WebView
JavaScript Execution”, it tries to match the presence of set-
JavaScriptEnabled API and the string WebView, which is
not enough since the vulnerability is only triggered if the API
parameter is set to true. Furthermore, the poor effectiveness
of QARK in all four benchmarks is influenced by its limited and
narrow-defined pattern matching. Moreover, the overly fine-
grained pattern defined leads to low B_Recall, evidenced by
Marvin for the type of “WebView Local File Access” mentioned
earlier.

Well-defined detection patterns are equally critical, evi-
denced by the varying detection logics employed by different
tools for the same vulnerability types analyzed in the above
paragraph. For example, regarding Marvin’s lower B_Recall
(35.7%) on MSTG&PIVAA, we analyzed its false negative
cases and discovered that Marvin employed an ineffective
method to detect certain types. Specifically, when detecting
the “Manifest Backup Issue”, Marvin attempted to extract
the “allowBackup” element’s value in AndroidManifest.xml.
It flags the vulnerability if the value was set to true. However,
in practice, it mistakenly used android:allowBackup,
consistently extracting None as the value, emphasizing the
importance of testing. We displayed the original detection
code alongside our corresponding fixed code in Lines 2-3 and
Lines 6-7 from Listing 3 respectively. Also, we have iden-
tified a limitation among source-code analysis tools. Taking
APKHunt as an example, it attempts to detect the “Mode
World Storage Writable Issue” by directly matching the
string MODE_WORLD_WRITEABLE. This approach often re-
sults in a significant number of FNs as it relies solely on
string matching without considering the subtleties of con-
stant value resolution in decompilation. As shown in the
decompiled vulnerable source code in Listing 1, the string
MODE_WORLD_WRITEABLE in the original Android source
code (Lines 2-4), representing the permission flag value “2”,
is decompiled to the numeric parameter “2” in Lines 6-8. This
disparity underscores a key challenge: relying solely on string
matching without accounting for the nuances of constant value
resolution diminishes the effectiveness of source code analysis
in SAST tools. Pattern matching is also constrained by its
inherent limits, as it locks onto fixed vulnerability patterns, dis-
regarding contextual consideration. For instance, as previously
discussed in § III-C2, SUPER handles “SQL Injection” without
context consideration.
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1 // The regular expression used in SUPER:
2 // (?: rawQuery|execSQL)\\(.*\"\\s*\\+\\s*.*\\)
3 protected void query(db) {
4 String query = "UPDATE "
5 + MyDatabase .Table1.TABLE_NAME
6 + " SET " + MyDatabase .Table1.COLUMN_NAME_VALUE
7 + " = \’" + value + "\’"
8 + " WHERE " + MyDatabase .Table1.COLUMN_NAME_KEY
9 + " = \’" + key + "\’";

10 try {
11 db.execSQL(query);
12 } catch (Exception e) {
13 Log.d("E", e.toString ());
14 } finally {
15 currentSnapshotOfTable ();
16 }}

Listing 2. The vulnerable code and the detection logic of “SQL Injection”
within SUPER.

1 # The original detection code
2 def check_backup(self):
3 return self.apk.get_element("application", "android:

allowBackup") == ’true’
4 # The fixed detection code
5 def check_backup(self):
6 return self.apk.get_element("application", "allowBackup

") == ’true’

Listing 3. The detection code of “Manifest Backup Issue” within Marvin.

Moreover, the dependency of third-party reverse or parsing
tools also impacts the overall performance of the selected
tools. For instance, QARK struggles with parsing certain
Java files due to its reliance on the underperforming library
plyj [69], a Java syntax analysis library. This limitation
is evident when QARK fails to parse the “NewPassword.
java” file,7 leading to a false negative (FN), especially
notable in failing to detect insecure API usages, like
Cipher.getInstance(“AES/ECB”). Moreover, Marvin
incurred many FNs in MSTG&PIVAA (6/9) due to triggered
parsing errors within the SAAF framework.

Based on the above in-depth analysis of cases, we have
summarized 5 reasons for the tools’ suboptimal effectiveness.
① Granularity issues in pattern matching. While nearly all
11 tools use pattern matching to detect vulnerabilities, vari-
ations in granularity were observed during the analysis of
tool metadata. We conducted an in-depth examination of each
tool’s vulnerability detection logic at the code level, combin-
ing the aforementioned analysis on single vulnerability types.
This involves analyzing the underlying detection approaches
for every vulnerability listed in VulsTotal across different tools.
Based on our in-depth analysis, we find that 62.68% (42/67)
of the unified vulnerability types exhibit consistent granularity
with the same logic and matching of sensitive APIs across
tools for the same type. We paid more attention to the fine-
grained granularity of rule implementations across these tools
and concluded the main cases of different granularity. 1) Data
flow-sensitive vulnerabilities. For most data disclosure types
(5.97%, 4/67) like “Logging Data Exposure”, As mentioned
earlier, differences in tracking sensitive data and defining sen-
sitive information lead to varying performance outcomes. Most

7A part of GHERA’s BlockCipher-ECB-InformationExposure-Lean-benign.

tools, such as SUPER, focus primarily on matching sensitive
APIs, employing relatively lenient criteria that can lead to
higher false positives. In a real-world APK sample, SUPER
flagged 597 instances of log data exposure, whereas APKHunt
reported 1,210 instances, thus increasing developers’ review
burden. 2) Vulnerabilities with preconditions. For vulnerabil-
ities that only trigger with certain preconditions, we find that
different tools have different detection granularity. For exam-
ple, the sensitive API setAllowFileAccess(‘true’)
in “Webview Local File Access” only triggers for min SDK
version below 17 while only AUSERA and QARK conduct
API matching with further validation of the min SDK version.
Five vulnerability types having the constraints of preconditions
are in this category, accounting for 7.46% (5/67). 3) Omitted
detection of certain sensitive APIs. For vulnerability types
with multiple sensitive APIs (23.88%, 16/67), differences arise
when tools omit certain sensitive APIs in the analysis. For
example, most tools only check for AES encryption misuse via
Cipher.getInstance("AES/ECB"), while ignoring the
implementation of Cipher.getInstance ("AES") also
uses the parameters “AES/ECB/PKCS5padding”. Among the 3
causes we discussed, the first two as rough detection granularity
tend to yield excessive false positive results, highlighting the
need for well-tuned granularity, avoiding extremes of coarse-
ness and fineness. The last may suffer from numerous false
negatives due to disparities in sensitive API coverage which
calls for reasonable coverage. ② Detection logic issues. As
shown in the case of Marvin detecting backup issues, inconsis-
tencies arise between the claimed detection capabilities of tools
and their actual performance, often arising from issues in their
detection logic. ③ A lack of code context. Concerning SQL In-
jection, despite source code analysis tools capturing high-level
language structures, their detection logic often relies on pattern
matching without contextual consideration, leading to instances
of false negatives. ④ Issues with integrated tool libraries.
Tools such as QARK relies on plyj, and Marvin relies on SAAF,
any problems with the libraries they depend on can significantly
impact their performance as mentioned earlier. ⑤ Decompila-
tion issues. Decompilation tools cannot perfectly reconstruct
source code, leading to issues such as missing code snippets
and parameter variations. Just as discussed in § III-C2d, the
decompilation content omissions would lead to false negatives
when using QARK and SUPER.

Answer to RQ3: ① All evaluated tools exhibit suboptimal
effectiveness across four benchmarks. Specifically, QARK
achieved the lowest F1-score on GHERA at 42.1% while
SUPER had the lowest B_Recall on CVE-based at 38.8%
and on CVE-U at 38.2%. On MSTG&PIVAA, QARK ob-
tained the lowest B_Recall of 33.3% ② Source code-based
tools, like QARK and SUPER tend to experience effec-
tiveness fluctuations affected by the quality of decompiled
source code. ③ Varying degrees of detection inconsistency
among tools can be found like Marvin can not detect “Man-
ifest Backup Issue” as its detection code bug. ④ The perfor-
mance of the tools on synthetic and real-world benchmarks
in our study did not differ significantly.
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TABLE VII
TIME PERFORMANCE COMPARISON OF DIFFERENT TOOLS
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Time (s) 197.6 191.7 14.9 172.6 8.5 63.2 21.7 49.6 63.3 45.0 40.7
Failed (apk) 0 8 0 0 3 142 1 12 5 23 9

D. RQ4: Time Performance

1) Setup: To investigate the tools’ time performance, we
employed all 305 sample apps from GHERA, MSTG&PIVAA,
and CVE-based benchmark to analyze detection time, running
each tool three times to avoid bias or unexpected errors,

2) Result: Table VII shows the average time taken by each
tool for scanning a single APK. We found that MobSF required
the longest scanning time (197.6s), followed by QARK (191.7s)
in the second longest position while APKHunt was the third
(172.6s). MobSF takes longer due to its extensive detection
scope. In addition to code analysis, it conducts further examina-
tion including security analysis on binary files, such as checking
the NX bit status in ELF files. QARK takes a longer time due
to its uses of three decompilers in parallel. Since the entire
decompilation waits for the last one to finish, an increase in
the runtime of any single decompiler will extend the overall
scan time, thus slowing down the process. APKHunt exhibits
longer analysis time as it traverses each decompiled Java file
to perform detection for all supported vulnerability types as it
supports more types.

We observed that SUPER exhibits the shortest time and
thus the best time performance overall for its utilization of
parallel scanning, which significantly reduces the scan time.
AndroBugs took slightly longer than SUPER for its scans.
The accelerated scanning is achieved through AndroBugs’mod-
ification of Androguard, allowing based on bytecode analy-
sis. DroidStatx took only 21.7s per APK, attributed to its fo-
cus on analyzing smali files derived from dex files, a less
time-consuming process than decompiling dex files into source
code. The remaining tools have a similar time cost ranging
from 40s to 70s. Our findings revealed that among the tools
with average scanning times below 100s, 75% (6/8) rely on
bytecode-based analysis. This implies that bytecode-based tools
are faster as bytecode is a less complex representation than
source code, simplifying analysis. By contrast, tools employing
decompilation to source code face substantial computational
demands because the decompilation process itself is highly
time-consuming.

To better understand the time performance of different tools,
we further present the size of APKs in CVE-based and GHERA
in Fig. 10 (the app size in MSTG&PIVAA is 5.9MB and
3.2MB respectively), and the variation in scanning time of each
tool across different APK size intervals in Fig. 9. Refer to
Fig. 10, the distribution of APK sizes within the CVE-based
spans a wide range, extending from 0.3 MB to 209.7 MB,
with most (75%) beneath 27.9 MB and just a few (9) surpass-
ing 100 MB while the APK size in GHERA is concentrated

Fig. 9. The scanning time of each tool across different APK size intervals.

Fig. 10. The size distribution of the sample APK in CVE-based and
GHERA.

near 1MB. Detection time typically rises with increasing APK
size across most tools, as anticipated for larger files. Notably,
APKHunt experiences a significant increase in detection time
for APKs over 100MB, suggesting it takes longer to analyze
larger files.

During the tool scanning process, we identified cases in
which certain tools failed to obtain scanning results. Specifi-
cally, out of the 305 APKs across three benchmarks (consid-
ering GHERA includes both benign and secure APKs), the
number of failure cases for each tool is detailed in Table VII.
Notably, JAADAS exhibited a high number of failed scans, with
142 instances. Failure cases in JAADAS stem from analysis
issues within Soot, which it relies upon. When failures are due
to timeouts, the root cause lies in discernible pauses occurring
during the Soot analytical procedure. The failure cases of SU-
PER were due to the unsuccessful DEX to JAR conversion using
Dex2Jar. In summary, tool failures stemmed from three main
reasons: ① Inherent flaws in the tools’ scanning logic, which
leads to unsuccessful scans. For instance, Marvin attempted
to convert a string to an integer without accounting for the
presence of the 0xa0 string. ② Unsuccessful decompilation of
APK, such as the flaw in QARK’s decompile function, leading
to scan terminations. ③ Failure during analysis. In this case,
bytecode analysis frameworks the SAST tools depend on such
as Soot encounter failures in analyzing, specifically encounter-
ing exceptions during processing. Examples include AUSERA
and JAADAS.
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Answer to RQ4: ① The bytecode-based tool (e.g., An-
droBugs) scans faster than most tools that employ source
code analysis. ② The selection of decompilers significantly
influences the scanning speed of the tool. For instance,
QARK employs three different decompilers, which results in
an increased time cost (i.e., 175.4s) for its scanning process.
③ These tools demonstrate varying degrees of scan failures.
Notably, JAADAS experienced 59 scan failures, attributable
to a bug within the Soot framework.

IV. DISCUSSION

A. Implications

1) Suggestions for SAST Tool Developers: To enhance
Android vulnerability detection capability, we propose the fol-
lowing suggestions for SAST tool developers.
(1) Expand coverage for overlooked vulnerability types. As
discussed in § III-A, many tools neglect certain vulnerability
types. In comparison to our 67 unified vulnerability types, the
highest coverage is merely 67%. Beyond taxonomy overlaps,
our study found notable differences in the unique vulnerability
types supported by tools. APKHunt leads with 15 unique types,
while some tools have none. Hence, tool developers can use our
taxonomy and unique types list supported by each tool (shared
on GitHub [21]) as a baseline for expanding supported types
in their tools. Further, as detailed in § III-B, 79% of Android-
specific CVEs’ unsupported vulnerability types, and 65% of
23 types in GHERA are undetectable to rely solely on pattern
matching. This exposes a significant gap between the detection
capabilities of current SAST tools and the security needs of
applications. Therefore, to better identify vulnerability types,
developers should prioritize expanding detection capabilities
for overlooked yet common types. Exploring alternative detec-
tion techniques beyond pattern matching is essential.
(2) Improve the effectiveness of vulnerability detection.
In § III-C, we discussed five technical reasons underlying tool
effectiveness. Here are some suggestions for developers: ① Use
more detailed detection patterns to cover various vulnerability
scenarios and prevent false negatives, as highlighted in § III-C.
② For tools that rely on decompilation tools for source code
analysis, they should enhance their detection performance by
incorporating code context. While not a novel tip, there are still
many tools that have not implemented it. ③ Ensure the usability
of integrated analysis frameworks, implement robust exception
handling, and regularly update tools to their latest versions. For
example, the analysis bugs in Soot or failed scan caused by
Dex2Jar (as mentioned both in § III-D). ④ Test and verify the
claimed vulnerability detection logic to align with actual results
and avoid discrepancies. For instance, despite the simplicity of
Marvin’s approach for detecting “Manifest Backup Issues”, its
simple bug resulted in misidentification.
(3) Evaluate tools on suitable benchmarks in consistency.
§ III-C reveals discrepancies between the vulnerability types
covered by tools versus those represented in three benchmarks
while the highest coverage is 88% from APKHunt at CVE-
based. Developers need appropriate benchmarks to evaluate

tool performance. The open-source community also urges the
creation of benchmarks that cover a broader range of types.
(4) Optimize the integration of decompilers. As detailed
in § III-D, the decompilation time greatly affects time cost
because source-code analysis tools rely on decompiled source
code. Tool developers could evaluate the effectiveness and ne-
cessity of decompilers in vulnerability detection, and consider
removing redundant or underperforming decompilers to reduce
scan times.

2) Suggestions for App Developers: For better SAST tool
selection for vulnerability detection, we give suggestions for
app developers.
(1) Select SAST tools via specific app security require-
ments. According to our analysis in § III-A, no single tool
can completely cover all the vulnerability types contained in
our proposed taxonomy, indicating the importance of SAST
tool selection with application-specific requirements. App de-
velopers should select SAST tools aligned with their specific
requirements related to their focus on app features. For example,
when assessing apps involving sensitive data, AUSERA which
provides more attention to detection of data leakage issues
should be prioritized.
(2) Select SAST tools based on the need for time cost.
For high-time performance needs, choose lightweight bytecode
SAST tools like AndroBugs given their efficiency. In scenarios
where pursuing vulnerability detection rate of detection with
flexible time budgets, using multi-decompiler tools like QARK
accepts higher time costs for enhanced detection.

B. Threats to Validity

1) External Validity: An external threat involves using CVE
as our sole real-world vulnerability source. This limitation po-
tentially constrains our analysis’s comprehensiveness and uni-
versality. However, our diverse, large in size, and systematically
constructed CVE-based benchmark mitigates this by encom-
passing 34 vulnerability types and 262 instances enhancing
our finding’s relevance, applicability, and reliability. Another
possible external threat exists from building the CVE-based
benchmark. This threat is intensified by the process of label-
ing the filtered CVEs with vulnerability types defined in our
proposed taxonomy, encompassing both the overlapped types
and the unique types. Since some descriptions contained in
CVE entries lacked clarity, we traced back to the resources
linked within each entry to obtain confirmed explanations to
better label. This helped mitigate potential labeling bias arising
from vague descriptions. We also conducted a cross-validation
approach to eliminate human bias. Furthermore, our study fo-
cuses on evaluating Android SAST tools that detect general
vulnerability types, excluding those designed for specific types.
The experiments were designed to evaluate Android SAST tools
that detected general vulnerability types, rendering it inappro-
priate to include specialized tools. Despite this limitation, our
assessment of general vulnerability detection tools still offers
valuable insights for the field.

2) Internal Validity: The internal threat to the effective-
ness of our research comes from artificially constructed unified
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taxonomy. While we have thoroughly examined and compared
the source code of each tool, potential human bias and errors
during the extraction and mapping of detection rules remain
a concern. To mitigate this threat, we have refined our tax-
onomy via cross-validation by all authors. In addition, in the
experiments we have done, tools are executed in their default
configuration. The default configuration of different tools may
not be able to fully perform their functions, which may affect
their detection results. However, we limit the experiment to the
default configuration, because this is the most likely configura-
tion for most users.

V. RELATED WORK

Validating the effectiveness of Android SAST vulnerability
detection tools has become an important research direction.
Currently, evaluations mainly rely on synthetic benchmarks or
serveal real-world apps. For example, Ranganath et al. [15]
evaluated 14 Android SAST tools on GHERA, a synthetic
benchmark proposed by Mitra et al. [55]. The study used
GHERA’s coarse-grained categories (e.g., ICC) to identify vul-
nerability types for tool evaluation leading to a rough corre-
spondence between the tools’ supported types and the GHERA
categories, while our evaluation delved into finer-grained types,
providing a more precise and detailed unified mapping of the
vulnerability types each tool can detect. Chen et al. [4], [10]
introduced AUSERA, a SAST tool with the capability of auto-
mated vulnerability detection for Android apps, and conducted
an evaluation of 5 SAST tools. Meanwhile, the study revealed
several reasons for the false positives introduced by the tools.
Reaves et al. [30] conducted a systematic analysis of the litera-
ture involving Android security research, providing a compre-
hensive overview of Android SAST tools and a discussion of
the techniques and frameworks used in Android SAST tools.
In addition, they evaluated 7 SAST tools based on the tools’
ease of use and successful scanning cases on a set of Google
Play apps. Senanayake et al. [16] also discussed the Android
vulnerability detection method based on comprehensive related
literature and provided an overview of the vulnerability detec-
tion method based on machine learning and traditional methods
(i.e. static analysis and dynamic analysis).

However, the research mentioned above does not take into ac-
count the inconsistency between vulnerability types supported
by the evaluation tools and vulnerability types supported by the
benchmark, which will introduce a certain bias in the evalua-
tion. In other words, the comparisons can only focus on coarse-
grained quantities instead of fine-grained vulnerability types.
Meanwhile, evaluation only by the synthetic benchmarks is
limited. Our work proposed a unified taxonomy that contains
67 vulnerability types that can help construct a benchmark that
can better match the detection capabilities of different tools,
leading to more fine-grained evaluation results. Additionally,
both synthetic benchmarks and real-world benchmarks have
been investigated in this work.

Several prior studies have conducted evaluations of SAST
tools in different contexts such as Java [67], [70], JavaScript
[71], and C/C++ [68]. For instance, Li et al. [67] compared 7

free-of-charge SAST tools using the OWASP Benchmark and
a constructed CVE Benchmark consisting of 165 unique Java
CVEs. Notably, while their findings coincide with our findings
on the limitations of synthetic benchmarks, our study scope,
distinct from it, focuses on Android SAST tools, given the
differences between the Android and Java ecosystems, such as
communication mechanisms, which lead to distinct vulnerabil-
ities. Our research delves into the technical gaps in Android
SAST tool performance for detecting general vulnerabilities
and conducts a quantitative analysis, emphasizing the need for
systematic research to reveal insights in the Android domain,
separate from the Java domain.

In summary, our work distinctively contributes to the state
of the art through the following aspects: 1) Target domain
(focused on general Android SAST tools), 2) Benchmarks
used (use of synthetic benchmarks and CVE-based bench-
mark), 3) Evaluation methodology (introduction of a unified
vulnerability taxonomy plus a scalable and automated evalua-
tion platform (VulsTotal)), and 4) Evaluation scope (inclusive
of aspects like vulnerability type coverage and consistency,
detection effectiveness, and time performance).

VI. CONCLUSION

In this paper, we have taken the first step to build a unified
platform VulsTotal, which contains 67 general/common vul-
nerability types and is further used to comprehensively and
effectively evaluate Android SAST tools. We then evaluated 11
selected Android SAST tools on both our newly constructed
real-world benchmarks and existing synthetic benchmarks. Our
study reveals numerous valuable insights into the tools’ per-
formance and provides clear guidance for future optimization
and improvement of the tools and an innovative perspective
to complement previous work analyzing SAST tools. Future
work can focus on developing a more effective and efficient
tool based on the insights gained from this paper.
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